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Abstract

The cellular environment is abuzz with noise attributed to random particle motion that

takes part in gene expression and subsequent interactions. In this noisy environment, clonal

cell populations exhibit cell-to-cell variability that can manifest significant phenotypic differ-

ences. Noise induced stochastic fluctuations in cellular constituents can be measured and their

statistics quantified. We show that these random fluctuations carry within them valuable in-

formation about the underlying genetic network. Far from being a nuisance, the ever-present

cellular noise acts as a rich source of excitation that, when processed through a gene network,

carries its distinctive fingerprint that encodes a wealth of information about that network. We

demonstrate that in some cases the analysis of these random fluctuations enables the full iden-

tification of network parameters, including those that may otherwise be difficult to measure.

This establishes a potentially powerful approach for the identification of gene networks and

offers a new window into the workings of these networks. Keywords: Gene Regulatory Net-

works / Stochastic Biological Processes / System Identification.

Introduction

Computational modeling in biology seeks to reduce complex systems to their essential com-

ponents and functions, thereby arriving at a deeper understanding of biological phenomena.

However, measuring or estimating key model parameters can be difficult when measurement

noise corrupts experimental data. Thus, when cellular variability or “noise” (Elowitz, et al,

2002) leads to measurement fluctuations, this may appear deleterious. This is not the case.

Just as white noise inputs help to identify dynamical system parameters (Ljung, 1999; Cin-

quemani, 2009), so too can characterization of noise dynamics elucidate natural mechanisms.

For example, steady state noise characteristics can distinguish between different logical struc-

tures such as AND or OR gates (Warmflash & Dinner, 2008). At the same time, temporal

measurements of transient dynamics can aid in the construction of reaction pathways (Arkin

et al., 1997). In combination, noise and temporal analyses yield powerful tools for parameter
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identification. For example, the averages of correlations in cell expression at many time points

reveal feed-forward loops in the galactose metabolism genes of E. coli (Dunlop et al, 2008).

Similarly, manipulating certain gene network transcription rates while observing the response

of statistical cumulants can help to identify reaction rates for some gene regulatory networks

(Rafford et al, 2008). In this paper, we examine the possibility of identifying system param-

eters and mechanisms directly from single cell distributions, such as those obtainable with

flow cytometry, without time-varying control and at only a handful of different time points.

We prove that the analysis of variability provides more information that the mean behavior

alone. And we illustrate our approach’s potential with numerical and experimental analyses of

common gene regulatory networks.

Results and Discussion

Gene Expression Model. We adopt the gene expression model in (Thattai & van Oudenaar-

den, 2001) characterized by random integer numbers of mRNA and protein molecules: R and

P , respectively. Transcription, translation, and degradation events change the system state by

altering these numbers. mRNA changes are modeled as random events that occur according to

exponentially distributed waiting times that depend on the transcription and degradation rates

kr and γr. Thus, given a state of r mRNA molecules, the probability that a single mRNA

molecule is degraded within the time increment dt is given by r · (γr · dt). Similarly, trans-

lation and degradation of proteins are dictated by rates kp and γp. The resulting stochastic

model is represented by a continuous-time, discrete-state Markov process. The probability of

finding the system in a given state (R(t) = r, P (t) = p) is fully characterized by the system’s

master equation, from which the evolution of moments E[R(t)],E[P (t)],E[R2(t)], . . . can be

described (see S.1).

Our first finding is that all parameters of this model are identifiable from cell population

distributions of protein/mRNA measured at as few as two time instants. In contrast, two time

measurements of mRNA/protein population averages are never sufficient for identifiability. To
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show this, it suffices to use first and second-order moments, or equivalently means, variances,

and covariances of proteins and mRNAs, instead of full distributions. At a given time, t, each

such measurement yields a vector: v(t) =
(
E[R(t)],E[P (t)],E[R(t)2],E[P (t)2],E[R(t)P (t)]

)
.

Given v(t0) and v(t1) at two distinct time instants t0 < t1, there generically exists a set of

parameters kr, kp, γr, γp that uniquely gives these measurements–all other parameter sets yield

different measurements (see Figs. 1E, 2A). We illustrate this here for transcription only (S.3

provides an implicit expression for the parameters of the full model). Suppose that {µ0, µ1}
and {σ2

0, σ
2
1} represent the measured mRNA mean and variance at two times t0 < t1 < ∞.

Then the parameters, {kr, γr} are fully identifiable, and

γr = − 1
2τ

log
(
σ2

1 − µ1

σ2
0 − µ0

)
, kr = γr

µ1 − exp(−γrτ)µ0

1− exp(−γrτ)
, where τ := t1 − t0.

Thus, the statistics, {µ0, σ
2
0, µ1, σ

2
1}, contain sufficient information to identify the model pa-

rameters. On the other hand, measurement of just the population averages, e.g. E[R], is

insufficient for identifiability, and there exists an infinite set of parameters {kr, γr}, that is

consistent with the same two mean measurements µ0 and µ1.

While parameters are identifiable from transient moment measurements, we find that it is

impossible to identify all parameters from stationary moments. Measuring means, variances,

and other statistics after all the transients have died away represents a lost opportunity to peek

into the cell’s inner workings and to recover the network parameters. For example, two dif-

ferent parameter sets may produce very different protein distributions at short times (Fig. 1D)

but indistinguishable distributions at long times (Fig. 1E). S.2 provides a proof that station-

ary moments of any arbitrary order are insufficient to uniquely identify the model parameters

kr, kp, γr, γp. Such stationary distributions will only enable the determination of relative pa-

rameter values, but any positive scaling of these values would produce the exact same measure-

ments for v∞. We note that stationary correlations, e.g. E[R(t)R(t+ τ)] for small time steps,

τ , could also provide the necessary dynamical information, but taking such measurements is

more difficult and requires the tracking of individual cells between measurement times.
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Having determined that full identification is achievable using two measurements of all first

and second order moments, we now explore the effect of partial moment measurements. We

consider two new scenarios: a) only {E[R],E[P ]} measurements are available; and b) only

{E[P ],E[P 2]} measurements are available. For each scenario, Fig. 2A shows the number of

measurements needed for parameter identifiability and demonstrates the advantage of using

full second order statistics. Furthermore, the performance with partial information depends on

which partial information is used. When protein and mRNA mean measurements alone are

used, full parameter identifiability is possible with three measurements. But with only protein

mean and variance measurements, at least five time measurements are needed. When only

protein mean measurement are available, full identifiability is impossible, regardless of the

number of measurements (see S.4).

Time measurements of moment dynamics impose nonlinear algebraic constraints on model

parameters. The above results can be understood by exploring how many such constraints are

needed to uniquely solve for the unknown parameters. The gene expression model has p = 4

unknown parameters and five unknown initial conditions (moments at t = 0). Thus, one would

expect that at least nine independent measurements are needed to identify these unknowns. The

five elements of v at t0 and t1 provide ten pieces of information, and are generally sufficient

(see Fig. 2A). Conversely, in a model of just the mean values {E[R(t)],E[P (t)]}, there are

p = 4 parameters and two initial conditions, and one expects that at least six independent

pieces of information would be needed for the identification. Indeed, at least three time mea-

surements are required and two measurements are never enough (see Fig. 2A). However, for a

model that describes only protein mean and variance measurements, at least five time measure-

ments are needed for full parameter identifiability. In this case, the dynamics of {E[P ],E[P 2]}
are coupled to those of {E[R],E[R2],E[RP ], and the additional measurements are needed to

identify the initial values for these. Finally, we note that in these cases, the number of mea-

surements needed for parameter identification are far fewer than the 2p+ 1 measurements that

were shown in (Sontag, 2001) to be sufficient for identification of the p unknown parameters

of a general nonlinear dynamical system.
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The results above establish the principle that transient measurements of full second order

moments carry information that allows one to identify all model parameters, at least assuming

noise-free measurements. If the measurements are corrupted by noise, it is often possible to

compensate with a larger number of measurements. To illustrate this, we have conducted 100

simulated identification studies in which the unknown parameters were taken from a broad log-

normal distribution (Fig. 2B). For these, we supposed that vj := v(tj) could be measured atm

equally separated time points {t0, . . . , tm−1}, and that each measurement had unknown errors

of ±10%. To explore the effect of incomplete measurements, we performed the identification

method for the three data scenarios considered earlier: 1) all moments; 2) only the means; and

3) only the protein means and variances. For each scenario, we investigated the impact on

parameter identification of using an increasing number of noisy measurements obtained from

a different number independent experiments (with different randomly chosen unknown initial

conditions).

As more data was gathered, the effects of measurement error were overcome and the prob-

ability of successful identification increased for every strategy (see Fig. 2C). With many mea-

surements, the parameters and the unknown initial conditions of the mRNAs and proteins could

be resolved even from inaccurate protein data alone–provided that it included information on

the protein variance. All of the above numerical experiments were conducted assuming that

the initial conditions were unknown; if the initial conditions were known or specified, we

found that the identification was even more successful (see supplemental Fig. 5). We have

thus demonstrated that for the simple gene expression model, cellular noise enhances the op-

portunity for system parameter identification, whereas measurement noise impedes it. The

deleterious effects of measurement noise can be overcome by increasing the number of mea-

surements.

Experimental Identification of lac Induction. Among the most studied gene regulatory ele-

ments is the lac operon of E. coli. This mechanism has been used to construct toggle switches

(Gardner et al, 2000; Kobayashi et al, 2004), genetic oscillators (Elowitz & Liebler, 2000;

5



Atkinson et al., 2003) and logical circuits (Weiss, 2001). Despite its ubiquitous use, precise in

vivo single cell quantification of the system remains insufficient. Indeed, most such quantifi-

cation attempts have come from in vitro experiments or population level studies. For example,

the lac repressor dissociation constant has been estimated to be Kd = 10−11M to 10−9M

(Oehler et al., 1990). In an E. coli cell with a volume of 10−15L, such dissociation constants

mean the occupancy of the lac promoter when there are ten such molecules is 94-99.94%. At

best, such measurements have only a probabilistic meaning at the level of single cells; at worst,

they have no relevance at all as other mechanisms, such as non-specific binding (Kao-Huang

et al., 1977), take on much greater significance.

We used flow cytometry experiments and computational analyses to identify a parameter

set to describe the in vivo single cell dynamics of green fluorescent protein (GFP) controlled

by the lac operon under Isopropyl-β-D-thio-galactoside (IPTG) induction (see Fig. 3A and

Methods). We explored the response of the system at several IPTG levels and at multiple

time points. While many mechanistic models may capture the available data, we focused on

the simplest consistent model, which consists of diffusion of IPTG into the cell, [IPTG]IN =

[IPTG]OUT · (1− exp(−rt)), and four basic reactions,R1,R2,R3, andR4 corresponding to

production and degradation of LacI and GFP.

R1 : φ w1−→ LacI, R2 : LacI w2−→ φ R3 : φ w3−→ GFP, R4 : GFP w4−→ φ

The production of LacI is constant, w1 = kL, corresponding to constitutive expression. How-

ever, production of GFP is a nonlinear function of the LacI level:

w3([LacI]) =
kG

1 + α[LacI]η
,

where kG is the unrepressed GFP production rate, α describes LacI occupancy strength, and

the Hill coefficient, η, accounts for cooperative binding of LacI. The GFP degradation rate,

w4 = δG · [GFP], is fixed, but LacI can be degraded or inactivated by IPTG such that the total
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LacI removal depends upon the IPTG concentration and is assumed to have the form w2 = δL ·
[LacI], where δL = δ

(0)
L + δ

(1)
L [IPTG]IN. The model also explicitly characterizes uncertainties

in the flow cytometry measurements (see Methods). In total, there are ten unknown positive

real parameters for the regulatory system, Λ = {kL, kG, δ(0)
L , δ

(1)
L , δG, α, η, r, µGFP, σ

2
GFP} ∈

R10
+ .

The measured fluorescence histograms at different times and different IPTG levels (Fig. 3)

cannot adequately be captured using low order moments. Furthermore, since wG is a nonlinear

function of LacI, there is no known analytical expression for the statistical moments of GFP.

Instead, we used a new method, called Finite State Projection (FSP), to identify the unknown

parameters based on their probability densities (see Methods). In the identification routine, a

parameter search was conducted to find parameter sets such that the total predicted fluores-

cence distribution was as close as possible to the measured distribution in a least squares sense

for all time points and IPTG levels.

Fig. 3B shows that the identified model results match the experimentally measured distribu-

tions exceptionally well. However, with the full set of ten unknowns in Λ, this identification is

not unique, and we found multiple parameter sets which provided equally good fits. However,

by utilizing additional information about the system, we could reduce the the uncertainty of

the identification. In particular, assuming that GFP is lost solely to dilution, we could specify

the rate δG = 3.8×10−4N−1s−1, corresponding to a half life of thirty minutes. The remaining

nine parameters could then be identified as:


kL = 1.7× 10−3 s−1 kG = 1.0× 10−1 s−1 η = 2.1

δ
(0)
L = 3.1× 10−4 N−1s−1 δ

(1)
L = 5.0× 10−2 (µM · N)−1s−1 α = 1.3× 104 N−η

r = 2.8× 10−5 s−1 µGFP = 220 AU σGFP = 390 AU

 ,

where N refers to molecule number.

Since the assumed model represents a simplified description of multiple events (folding

dynamics, elongation, etc...), these parameters are best viewed as model-specific empirical
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measurements. Still, it is possible to make some comparisons between the identified param-

eters and previous analyses. First, the production and degradation rates of LacI yield a mean

number of kL/γ
(0)
L ≈ 5 molecules per cell at steady state in the absence of IPTG, on the same

magnitude of wild-type levels of about ten per cell. Second, the level of LacI required for half

occupancy of the lac operon is [LacI]1/2 = (1/α)1/η = 0.012 which compares well to values

0.006-0.6 molecules (10−11 − 10−9 M, Oehler et al., 1990). Third, a Hill coefficient of 2.1

is reasonable considering that LacI binds to the operon as a tetramer. Finally, the degradation

rate LacI, δ(0)
L is close to the dilution rate of 3.8 × 10−4N−1s−1, reflecting the high stability

of that protein. In addition to comparing the parameters to values in the literature, we have

used the parameter set identified from {5, 10, 20}µM IPTG induction to predict the fluores-

cence under {40, 100}µM IPTG. Fig. 3C shows that these predictions match the subsequent

experimental measurements very well despite the vastly different shapes observed at the high

induction levels.

With single cell experimental techniques, it has become possible to efficiently measure

fluctuations in cell constituents. When properly extracted and processed with rapidly improv-

ing computational tools, these measurements contain sufficiently rich information as to enable

the unique identification of parameters. We have shown that transient dynamics are important

to this effort, and in principle, identification can be accomplished when accurate distributions

are measured at only two distinct time points. More time points are needed if the distributions

are poorly measured, but the idea remains the same. We have demonstrated the potential of our

approach by experimentally identifying a predictive model of lac regulation from flow cytom-

etry data. Hence, the proposed integration of single cell measurements and stochastic analyses

establishes a promising approach that offers new windows into the workings of cellular net-

works.
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Methods

Media and Reagents. Cells were grown in Luria-Bertani (LB) 1% tryptone, 0.5% yeast

extract, 0.4% NaCl containing Isopropyl B-D-thiogalactoside (IPTG) at the concentrations

noted. To select for plasmid maintenance, antibiotics were used at the following concentra-

tions: 100µg/ml ampicillin (amp); 40µg/ml kanamycin (kan); 12.5 µg/ml tetracycline (tet).

Bacterial Strains and Plasmids. The E. coli strain used was DL5905: E. coli K-12 (isolate

MC4100) containing [F’ proAB lacIqZ∆M15 Tn10 (Tetr)] from strain XL-1 Blue (Stratagene)

and plasmid pDAL812. To construct plasmid pDAL812, GFP(LVA) (Anderdson et al., 1998),

was PCR amplified from plasmid pRK9 (a gift from John Cronan) using the forward primer

(5’-CAA CAA AGA TCT ATT AAA GAG GAG AAA TTA AGC ATG AGT AAA GGA GAA

GAA CTT TTC A-3’) which includes a BglII site and removes an SphI site from the original

pRK9 sequence, and the reverse primer (5’-CAA CAA GCA TGC ATT AAG CTA CTA AAG

CGT AGT TTT CGT CGT TTG C-3’) which adds an SphI site. This fragment was digested

with BglII and SphI and cloned into the BglII and SphI sites of pLAC33 (Warren et al., 2000),

removing a portion of the TetR cassette.

Fluorescence Induction Experiments. Twenty-four separate cell cultures were allowed to

grow in LB broth containing the appropriate antibiotics to an approximate OD600 of 0.2 and

were then induced with {0, 5, 10, 20, 40, 100}µM concentrations of IPTG at the times of 5,

4, 3, and 0 hours before flow cytometry measurements. Flow cytometry was carried out us-

ing a BD Biosciences FACSAria instrument with a 100µm sorting nozzle at low pressure.

GFP(LVA) was excited using a 488nm blue laser and detected using 530/30nm filter. For

each sample, 1,000,000 events were collected. To ensure repeatability, the experiments were

conducted twice each on a separate days.

GFP Induction Model. The stochastic model for the IPTG-GFP induction is composed of

the four non-linear production / degradation reactions given in the main text. The rates of

these reactions depend upon the integer populations of the proteins LacI and GFP as well
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as the set of non-negative parameters, {kL, kG, δ(0,1)
L , δG, α, r, η} ∈ R8. For the stochastic

system modeled here, the joint (LacI, GFP) probability distributions of both proteins evolve

according to the infinite dimensional Chemical Master Equation (vanKampen, 2001). This

can in turn be expressed as an infinite set of linear ordinary differential equations, Ṗ(t,Λ) =

A(t,Λ) · P(t,Λ). Unlike in the simple transcription/translation model, the toggle reactions

are non-linear, and the CME has no known exact solution. We use a finite state projection

approach (Munsky & Khammash, 2006) that makes it possible to approximate the solution

to any degree of accuracy. For any error tolerance ε > 0, we systematically find a finite-

dimensional projected system ṖFSP (t,Λ) = AJ(t,Λ) ·PFSP (t,Λ) whose solution is within

the desired tolerance. More precisely:

∥∥∥∥∥∥∥
 PJ(t,Λ)

PJ ′(t,Λ)

−
 PFSP (t,Λ)

0


∥∥∥∥∥∥∥

1

≤ ε, and PFSP (0,Λ) = PJ(0,Λ),

where the index vector J denotes the set of states included in the projection, PJ is the cor-

responding probabilities of those states, and AJ is the corresponding principle submatrix of

A (Munsky & Khammash, 2006). The one-norm measure is used to ensure that absolute sum

of the probability density error is guaranteed to lie within the tolerance. The solution of each

projected master equation is found using the stiff ode solver ode23s in MathWorks Matlab.

Modeling Flow Cytometry Data. In addition to modeling the regulatory dynamics of the sys-

tem, one must also account for the inherent uncertainty within measured levels of fluorescence

activity. The process used to account for this uncertainty has three components. First, in an

effort remove outliers in cell volume and density and thereby reduce the effects of unmodeled

dynamics, each cell population was gated separately using forward and side side scatter data.

Specifically, the forward and side scatter measurements were used to form a two-dimensional

joint histogram with 50 × 50 logarithmically distributed bins (see Supplemental Fig. 6). The

maximum point in this histogram was recorded and then the gating region was chosen to in-

clude every bin which had at least one third as many counts as the maximal bin. Second, flow

cytometry measurements in the absence of IPTG have been used to calibrate for the back-
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ground fluorescence of the cell populations at the various instances in time, and it has been

assumed that the background fluorescence distribution, fBG(x), is independent of the levels of

IPTG, LacI and GFP. Third, each GFP molecule is assumed to emit a normally distributed ran-

dom amount of fluorescence with unknown mean, µGFP, and variance, σ2
GFP, both of which

are to be identified. Thus, if pn = pn(t,Λ, [IPTG]) denotes the probability of having exactly

n = {0, 1, 2, . . .} molecules of GFP, then the probability density of having exactly x arbitrary

units of fluorescence due to GFP is computed as:

fGFP(x) =
∞∑
n=0

pn · 1√
2nπ · σ2

GFP

exp

(
−(x− n · µGFP)2

2n · σ2
GFP

)
.

Finally, the total observable fluorescence is the sum of the GFP florescence plus the back-

ground noise, and the distribution of total fluorescence is found via the convolution:

fTot(x) =
∫ x

−∞
fGFP(x− s) · fBG(s) · ds ≈

∫ x

0
fGFP(x− s) · fBG(s) · ds.

Identification Procedure. With the FSP solution and the computation of the expected fluores-

cence, the identification procedure is carried out by finding the parameter vector Λ? that mini-

mizes the one norm difference between the experimentally measured distribution f (i)
Meas(t, [IPTG])

and the numerical solution of that distribution:

Λ? := argminΛ

{∑
i

qi ·
∥∥∥f (i)

Meas − f (i)
Tot

∥∥∥
1

}
,

where the summation is taken over all of the different experimental conditions of different

induction times and IPTG levels, and the weight qi specifies a relative importance to each of

these measurements. These weights have been chosen such that each IPTG level has the same

total importance and so that greater importance is placed upon measurements that differ most

from the background fluorescence. The values for these weights are given in Fig. 3. The pa-

rameter identification is accomplished by starting with an initial parameter guess, Λ0, and then
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this set is updated iteratively using gradient-based and simulated annealing searches until the

computed distribution matches the experimental distribution as closely as possible. The opti-

mization procedure is repeated for multiple, randomly generated initial parameter guesses. An

optimal parameter set is regarded as unique if the given solution yields the smallest achieved

value for the objective function and if that parameter has been achieved during many such

identification runs each beginning with different parameter guesses.
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Figure Legends
Figure 1. (A) Simple gene expression model representing gene transcription and trans-

lation. (B,C) Simulations of mRNA (green) and protein (blue) populations. The solid red

lines denote the mean values, and the dashed lines are one standard deviation above and below

that mean. (D,E) mRNA (green) and protein (blue) distributions at (D) t = 5000s and (E)

t = 1000s for two different parameter sets but the same initial conditions.

Figure 2. Comparison of strategies for the identification of the gene expression model.

(A) Minimum number of measurements needed for full parameter identification. (B) The

log-normally distributed parameters of 100 simulated models, which combined with an initial

distribution at time t = 0 defined the moment trajectories. (C) Percent identification suc-

cess rates (within 5% for all parameters) for different identification strategies, assuming that

measurements had unknown errors of ±10% and were taken every 100 seconds.

Figure 3. Experimental identification of a simple construct (A) in which IPTG induces the

production of GFP. (B) Experimentally measured histograms of gfp expression on two differ-

ent days (solid blue and green lines–in arbitrary units) and the best determined parameter fit

(red-dashed lines). Here each column corresponds to a different measurement time (0,3,4,5)hr

after induction and each row corresponds to a different level of extra-cellular IPTG induction

(5,10,20)µM. In the parameter fits, different weights were applied to each experimental condi-

tion, shown as the values {q} in the histograms. (C) Predicted (red) then measured (blue and

green) Fluorescence at (40,100)µM.
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Supplemental Material

S.1. Implicit expression for transcription and translation.

In this supplemental section, we derive explicit expressions for the evolution of the first

two moments in the simple gene transcription and translation process. For this derivation, let

R denote the population of mRNA molecules, and let P denote the population of proteins in

the system. As above, these populations change through four reactions:

∅ → R

R→ ∅

R→ R+ P

P → ∅

for which the propensity functions (or stochastic reaction rates) are

w1 = kr + k21P,

w2 = γrR,

w3 = kpR, and

w2 = γpP.

Here the term k21 corresponds to a feedback effect that the protein is assumed to have on the

transcription process. In positive feedback, k21 > 0, the protein increases transcription; in

negative feedback, k21 < 0, the protein inhibits transcription. For the results in the main text,

this feedback term has been set to zero.
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The master equation [13] for this system can be written:

Ṗi,j(t) = −(kr+k21j + γri+ kpi+ γpj)Pi,j(t)

+ (k+k21j)Pi−1,j(t)

+ γ(i+ 1)Pi+1,j(t)

+ kpiPi,j−1(t)

+ γp(j + 1)Pi,j+1(t), (1)

where Pi,j(t) is the probability that (R,P ) = (i, j) at the time t, conditioned on some initial

probability distribution P(t0). In this expression, the first negative term corresponds to the

probability of transitions that begin at the state (R,P ) = (i, j) and leave to another state,

and the remaining positive terms correspond to the reactions that begin at some other state

(R,P ) 6= (i, j) and transition into the state (i, j).

The mean populations of mRNA and protein molecules can be written as:

v1(t) = E{R} =
∞∑
i=0

∞∑
j=0

iPi,j(t)

v2(t) = E{P} =
∞∑
i=0

∞∑
j=0

jPi,j(t). (2)

The derivatives of these mean values are found simply by substituting (1) into (2):

v̇1(t) =
∞∑
i=0

∞∑
j=0

iṖi,j(t) = kr+k21v2 − γrv1,

and

v̇2 =
∞∑
i=0

∞∑
j=0

jṖi,j(t) = kpv1 − γpv2.
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Similarly, expressions for the second uncentered moments can be written:

v3 = E{RR} =
∞∑
i=0

∞∑
j=0

iiPi,j ,

v4 = E{PP} =
∞∑
i=0

∞∑
j=0

jjPi,j ,

v5 = E{RP} =
∞∑
i=0

∞∑
j=0

ijPi,j , (3)

and evolve according to the set of ordinary differential equations:

v̇3 =
∞∑
i=0

∞∑
j=0

i2Ṗi,j(t)

= kr + (2kr + γr)v1 − 2γrv3+k21v2 + 2k21v5,

v̇4 =
∞∑
i=0

∞∑
j=0

j2Ṗi,j

= kpv1 + γpv2 − 2γpv4,+2kpv5,

v̇5 =
∞∑
i=0

∞∑
j=0

ijṖi,j

= kpv3 + krv2+k21v4 − (γr + γp)v5.

Altogether the various components of the first two moments,

v(t) :=
[

E{R} E{P} E{RR} E{PP} E{RP}
]T
,
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evolve according to the linear time invariant ODE:

v̇ =



−γr k21 0 0 0

kp −γp 0 0 0

γr + 2kr k21 −2γr 0 2k21

kp γp 0 −2γp 2kp

0 kr kp k21 −γr − γp


v +



kr

0

kr

0

0


= Av + b (4)

These expressions now fully characterize the dynamics of the first two moments of mRNA

and protein molecules. With these expressions one can now begin to identify the various

parameters: [kr, γr, kp, γp, k21] from properly chosen experimental data sets.

S.2. Non-Identifiability from Stationary Distributions

In this supplemental section, we show conclusively that the parameters of the transcrip-

tion/translation model cannot be identified from invariant distributions alone. Suppose that the

moments of the probability distribution described in (4) has an invariant distribution:

v∞ = lim
t→∞

[v1, v2, v3, v4, v5]T .

These steady state moments must satisfy the expression:

Av∞ − b = 0, (5)

which can be rewritten in terms of the unknown parameters as:

Ψ∞Λ = lim
t→∞

Ψ(t)Λ = 0,
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where

Ψ(t) =



1 −v1 0 0 v2

1+2v1 v1 − 2v3 0 0 v2+2v5

0 0 v1 −v2 0

0 0 v1+2v5 v2−2v4 0

v2 −v5 v3 −v5 v4


.

In Eqn. (5) there are two possible cases: (1) the rank of the matrix is full and we are left with

the trivial solution Λ = 0, or (2) the matrix has a null-space spanned by {φ1, . . . , φp} and

there are an infinite number of parameter sets that will result in the same invariant distribution:

Λ =
p∑
i=1

αiφi, for any [α1, . . . , αp] ∈ Rp.

So long as the parameters enter linearly into the propensity functionsw(x) =
∑M

µ=1 cµf(x),

then one can extend this argument for any finite number of n moments of the stationary dis-

tribution. This tells us that the steady state distribution cannot provide enough information to

uniquely identify the set of system parameters. Additional information is needed. For exam-

ple, if the rank of the null space is one, then the knowledge of any one parameter from the set

Λ can provide an additional linearly independent equation, and can enable the unique determi-

nation of the parameters. If the rank of the null space is p, then at least p additional, linearly

independent, pieces of information will be required.

S.3. Implicit Expressions for the Identification of Transcription and Translation Pa-

rameters from Transient Data

In this supplemental section, we show how one can obtain an implicit analytical expression

for transcription and translation parameters in the absence of feedback (k12 = 0). For this we
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define the following variables:



z1(t)

z2(t)

z3(t)

z4(t)


=



µr

σrr − µr
µp

σrp


=



v1

v3 − v2
1 − v1
v2

v5 − v1v2


.

These can be shown to evolve according to the linear ODE:

d

dt



z1(t)

z2(t)

z3(t)

z4(t)


=



−γr 0 0 0

0 −2γr 0 0

kp 0 −γp 0

kp kp 0 −(γr + γp)





z1(t)

z2(t)

z3(t)

z4(t)


+



kr

0

0

0


.

The first two equations yield kr and γr as discussed above. With these, one can solve for the

z1(t) and z2(t):

z1(t) = e−γr(t−t1)z1(t1) +
kr
γr

(
1− e−γr(t−t1)

)
z2(t) = e−2γr(t−t1)z2(t1),

and plug these expressions into the third and fourth equations. This gives the following ex-

pressions for the solution:

 z3(t2)

z4(t2)

 =

 e−γp(t2−t1)z3(t1) + kp
∫ t2
t1

e−γp(t2−τ)z1(τ)dτ

e−(γr+γp)(t2−t1)z4(t1) + kp
∫ t2
t1

e−(γr+γp)(t2−τ)(z1(τ) + z2(τ))dτ.

 .
One can combine many of the known quantities to gather a simpler expression

 z3(t2)

z4(t2)

 =

 e−γp(t2−t1)z3(t1) + kp
∫ t2
t1

e−γp(t2−τ)z1(τ)dτ

e−γp(t2−t1)C1 + kp
∫ t2
t1

e−γp(t2−τ)C2(τ)dτ.

 , (6)
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where

C1 = e−γr(t2−t1)z4(t1), and

C2(τ) = e−γr(t2−τ)(z1(τ) + z2(τ))

are known expressions. Solving the first expression in terms of kp and substituting that expres-

sion into the second yields the implicit expression for γp:

z4(t2) = e−γp(t2−t1)C1 +
z3(t2)− e−γp(t2−t1)z3(t1)∫ t2

t1
e−γp(t2−τ)z1(τ)dτ

∫ t2

t1

e−γp(t2−τ)C2(τ)dτ. (7)

An explicit expression for γp does not appear to be immediately obvious. However, by sub-

stituting in the known expressions for C1, C2(τ), and z3(t1), one can easily plot the the left

hand side of this expression as a function of γp. For example, consider the system with the

parameter set:

Λ =



kr

γr

kp

γp


=



0.05

0.005

0.05

0.001


,

and the initial condition at t1 = 0 of

z(t1) =



z1(t1)

z2(t1)

z3(t1)

z4(t1)


=



1

0.2

10

5


.

The corresponding response at t2 = 100s is

z(t2) =



z1(t2)

z2(t2)

z3(t2)

z4(t2)


=



4.541

0.07358

23.07

14.82


.

25



10−4 10−2 100 102100

15

20

25

γp

z 4
(γ

p
,t

2
)

Figure 4: Implicit determination of the protein degradation rate. The red curve corresponds to the
right hand side of Eqn. 7 versus γp. The horizontal dashed line corresponds to the measured value
of z4(t2). From the figure, one can correctly determine that γp = 0.001 (vertical dashed line).

Assuming that the quantities z(t1) and z(t2) are known exactly, then it is relatively easy to

identify the first two parameters kr and kp and substitute these into the expression (7). This

expression can then be plotted as a function of the unknown γp as shown in Figure 4. The

value of γp is the value at which the expression crosses the measured value for z4(t2), which

can be found using a simple line search. From the figure it is obvious that this intersection

does indeed correspond to the correct value of γp = 0.001. Once kr, γr, and γp are all known,

it is simple to solve for kp using (6).

S.4. Non-Identifiability from Protein Mean alone

In this section we show analytically that the parameters of the transcription/translation

cannot be identified from the protein mean alone. Consider the expressions for the mRNA and

protein means (E{R},E{P}):

d

dt

 E{R}
E{P}

 =

 −γr 0

kp −γp

+

 kr

0

 .
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The solution for the mRNA and protein means at t > 0 can be written as:

E{R(t)} = e−γrtR0 +
kr
γr

(
1− e−γrt

)
E{P (t)} = e−γptP 0 +

∫ t

0
e−γp(t−τ)kpE{R(τ)}dτ

= e−γptP 0 +
∫ t

0
e−γp(t−τ)kp

(
e−γrτR0 +

kr
γr

(
1− e−γrτ

))
dτ,

= e−γptP 0 + kpR0

∫ t

0
e−γp(t−τ)e−γrτdτ + kpkr

∫ t

0
e−γp(t−τ) 1

γr

(
1− e−γrτ

)
dτ,

where R0 and P 0 are the initial expectations of the mRNA and proteins, respectively. By

separating out all of the terms that depend upon unknowns kr, kp and R0, the expression for

the evolution of E{P (t)} can be rewritten as:

E{P (t)} = f1(γ1, t)P 0 + f2(γp, γr, t)kpR0 + f3(γp, γr, t)kpkr.

Suppose that the parameters γr and γp are known, and that E{P} can be measured at any point

in time. In this case, it is immediately obvious that at best one can only determine the two

products kpR0 and kpkr, but one cannot individually determine any of the three individual

parameters kr, kp, or R0 without some additional piece of information, such as measurements

describing the variation in the protein populations.
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Figure 5: Different strategies to identify transcription and translation parameters from simulated
data with known initial conditions. (A) One hundred different models have been generated, each
with log-normally distributed parameters. Histograms of these parameters are shown and cover
about four different orders of magnitude. Each parameter set and initial distribution at time t = 0
defines a trajectory of the moments. These trajectories are assumed to be fully (B) or partially (C,D)
measured at various points in time, but with unbiased additive measurement errors of±10%. (B-D)
An estimation strategy is considered to be successful if it manages to identify all four parameters
{kr, γr, kp, γp} each within an error of ±5%, and each table lists the number of successes per one
hundred systems: (B) with full measurement of the moments: (E[R],E[P ],E[R2],E[P 2],E[RP ]),
(C) with measurement of only the means: (E[R],E[P ]), and (D) with measurement of only the
protein marginals: (E[P ],E[P 2]). For each strategy, the identification is done by using one, two or
four different experiments each with a different known initial condition. Also, different numbers
of measurement points are considered which include 10, 20 or 40 points in time, each separated by
a time of 100 seconds.
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Figure 6: Gating of flow cytometry measurements based upon forward and side scatter data. A)
Histogram of the forward and side scatter measurements of gfp without IPTG induction before
gating. The black line represents the selected set of cells for which the histogram is one third its
maximal height or greater. B) After gating only those cells within the densely populated gating
region are kept for later analysis.
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